
An Alternative to Technology Readiness Levels for Non-Developmental Item (NDI)

Software

James D. Smith II

Carnegie Mellon Software Engineering Institute

jds@sei.cmu.edu

Abstract

Within the Department of Defense, Technology

Readiness Levels (TRLs) are increasingly used as a tool
in assessing program risk. While there is considerable

evidence to support the utility of using TRLs as part of an

overall risk assessment, some characteristics of TRLs

limit their applicability to software products, especially

Non-Developmental Item (NDI) software including

Commercial-Off-The-Shelf, Government-Off-The-Shelf,
and Open Source Software. These limitations take four

principle forms: 1) “blurring-together” various aspects of

NDI technology/product readiness; 2) the absence of

some important readiness attributes; 3) NDI product

“decay;” and 4) no recognition of the temporal nature of
system development and acquisition context. This paper

briefly explores these issues, and describes an alternate

methodology which combines the desirable aspects of

TRLs with additional readiness attributes, and defines an

evaluation framework which is easily understandable,

extensible, and applicable across the full spectrum of NDI
software.

1. Introduction

Technology Readiness Levels (TRLs) have been used

within the National Aeronautics and Space

Administration (NASA) as part of an overall risk

assessment process, since the late 1980s. By the early

1990s, TRLs were routinely used within NASA to support

technology maturity assessments and comparisons of

maturity between different hardware technologies [1, 2].

Within the United States Department of Defense

(DoD), there has been considerable interest in using TRLs

as part of risk assessments for entire systems, including

both hardware and software. Current DoD guidance

requires technology readiness assessments prior to

entering System Development and Demonstration; TRLs

are one approach to meeting this requirement [3]. The Air

Force Research Lab has adapted the NASA TRLs for use

in assessing the readiness of critical technologies for

incorporation into weapon systems, and the Army

Communications Electronics Command (CECOM) has

developed a draft set of TRLs to support software

technology management [4, 5].

Several sources cite the difficulties in applying TRLs

to assess the readiness of software-based technologies and

products [5, 6]. Some of the characteristics of TRLs that

limit their utility in assessing Non-Developmental Item

(NDI) software product (COTS: commercial-off-the-

shelf, GOTS: government-off-the-shelf, OSS: open-

source software) readiness are discussed in more detail in

the following sections.

2. Relationship between quality and

readiness

Understanding the need for an alternative to TRLs first

requires an understanding of what is meant by

“readiness.” Readiness, as used in this report, is a measure

of the suitability of a software technology or product for

use within a larger software-intensive system in a

particular context (e.g., development of a management

information system or sustainment of a deployed tactical

information processing system). In other words, the

readiness of the software product or technology reflects

some measure of the risks of using it in the larger system:

higher readiness denotes lower risk; lower readiness,

higher risk. This can best be illustrated through the use of

a recognized quality model, such as ISO/IEC 9126-1

(Software engineering—Product quality—Part 1: Quality

model) [7]. In this model, software quality is defined in

terms of six external and internal quality characteristics,

each with a number of sub-characteristics and four

“quality in use” characteristics. Readiness, then, can be

thought of as representing some non-linear combination

of these characteristics and sub-characteristics, in the

context of a particular system.

It is important to note that “readiness” and

“maturity”—though frequently used interchangeably—are

not the same thing. A mature product may possess a

greater or lesser degree of readiness for use in a particular

system context than one of lower maturity. Numerous

factors must be considered, including the relevance of the

products’ operational environments (e.g., usage patterns,

timeliness/throughput requirements, etc.) to the system at

hand, product/ system architectural mismatch, as well as

other factors that will be discussed later in this paper.

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

1

3. Understanding readiness in context

To better understand how context influences the

determination of readiness in a software product or

technology, a picture may be useful. In their paper,

Hanakawa and colleagues model the knowledge growth

experienced by an organization during software

development. The resulting knowledge growth can be

represented by a sigmoid (s-shaped) curve [8]. We can

extend this model to a software-intensive system

acquisition or development, and equate “knowledge” with

some measure of system maturity, such as requirements

satisfaction or technical performance measure

improvement. We then find that a typical acquisition or

development will mature slowly during initial concept

exploration and technology development until some

critical point is reached (e.g., fundamental science is

understood or algorithms validated) at which point

progress becomes more rapid. As a system moves towards

greater maturity, and most—though probably not all—

requirements are satisfied, progress tapers off. In

Hanakawa’s model, the exact shape of this curve is

dependent on the

• Statistical distribution of tasks (e.g., requirements

to be satisfied or program milestones)

• Degree of task difficulty

• Knowledge/competence of the organization to

perform the tasks

• Rate at which knowledge is accumulated through

task performance

Thus, every acquisition and development will result in

a unique “maturity profile,” as shown in Figure 1.

Time

M
a

tu
ri
ty

Figure 1. Maturity profile curves

These maturity growth curves provide some insight

into the system development context, and permit an

understanding of how the individual contributors to

product or technology readiness vary in importance

during the course of the program. For example, early in a

program’s life cycle, the fact that a software technology

or product is projected to be unsupported some-time

during the system’s operational lifetime is probably of

much less significance than if that product or technology

is so closely tied to the system’s architecture or

implementation that replacing it would send you “back to

the drawing board.” On the other hand, during the post-

deployment sustainment phase, the impending retirement

of a product or technology may become as important—or

possibly more important—than how closely tied it is to

the system’s design. The key to this approach is that,

while the absolute values of the individual contributors to

product or technology readiness cannot be defined, it is

possible (in fact, it is necessary) to articulate the

importance of one aspect (e.g., importance) relative to

another, using “fuzzy” definitions like “as important as,”

or “much less important than.” This provides the basis for

the evaluation framework described later in this paper.

4. Limitations of TRLs

Given the origin of TRLs, it is unsurprising that

organizations experience difficulty in using them to assess

the readiness of software-based products. Characteristics

of TRLs include the blurring, or blending together of

multiple components of readiness; the lack of any built-in

mechanism to deal with issues such as the “criticality” of

a technology or product; NDI product “aging”; and

varying sensitivities to different contributors to readiness

experienced at different points in the development/

acquisition life cycle. These characteristics complicate

TRL use in assessing the readiness of NDI software

products. These issues are discussed in more detail in the

following sections.

4.1. Blurring contributions to readiness

One of the difficulties with using TRLs in

programmatic and technical risk assessments is the

manner in which TRL definitions combine several

different aspects of, or contributors to, technology and

product readiness. For example, CECOM’s draft software

TRLs defines TRL 7 as follows:

Represents a major step up from TRL 6,

requiring demonstration of an actual system
prototype in an operational environment…

Algorithms run on processor of the operational

system and are integrated with actual external

entities. Software support structure is in place.

Software releases are in distinct versions.

Frequency and severity of software deficiency
reports do not significantly degrade

functionality or performance. VV&A completed

[5].

Thus, TRL 7 combines aspects from across all the

product external quality characteristics: for example,

functionality (“Algorithms run on [the] processor of the

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

2

operational system and are integrated with actual external

entities.”), maintainability (“Software support structure is

in place.”), and reliability (“Frequency and severity of

software deficiency reports do not significantly degrade

functionality or performance”), as well as several quality-

in-use characteristics. The manner in which these

combine makes it difficult, if not impossible, to

understand how any one aspect contributes to, or

influences the overall readiness of the product or

technology.

4.2 Product criticality

Just as importantly, TRLs leave out such

considerations as the degree to which the technology is

critical to the overall success of the system (including

how difficult it would be to replace it, or assume some

fallback posture, should the technology in question prove

unacceptable), or the suitability of the technology in

question to its intended use within the system.

Some attempts have been made to deal with this

through the use of “correction factors” to adjust the TRL

for a given technology if that technology is critical to the

success of the system (as measured by the percentage of

the total system capability provided by the technology in

question), or the technical complexity of the technology.

For example, a program may adjust a TRL downward by

some amount if a particular technology or product

comprises more than some threshold, measured as a

percentage of the functionality of the system [9]. Other

techniques include normalizing technology readiness to

the relevant environment for the different life-cycle

phases of an acquisition or development (e.g., for a

laboratory “bench top” test, a product or technology with

a TRL of 3 or 4 may be acceptable) [4, 5, 9].

4.3 Software aging

TRLs were designed to measure the maturation of

technologies as a way to gauge their readiness for use in a

specified context. In this view, a technology (e.g., as used

in a spectrometer) that has been “flight proven” through

successful operation in space would be evaluated as being

at TRL 9. Absent any changes to the way in which the

technology is employed, it remains at TRL 9.

Software, on the other hand, is continually changing.

As noted by Basili, a COTS software product generally

“…undergoes a new release every eight to nine months,

with active vendor support for only its latest three

releases” [10]. Furthermore, software ages as a result of

maintenance activities. In their paper, Eick and colleagues

discuss three mechanisms of maintenance-induced

software aging:

1. “Span of changes,” which is shown to increase over

time

2. “Breakdown of modularity,” which manifests loss of

architectural integrity of the software

3. “Fault potential,” which indicates the probability

that modification introduces new faults into the software

[11].

Compounding these effects is the fact that a system

developer using NDI software as part of a larger system

has little or no control over the scope or timing of these

changes. Similarly, other forms of NDI software (i.e.,

GOTS and OSS) experience analogous decay processes.

4.4 Readiness in context

The above-mentioned issues, coupled with the

realization that context varies throughout the life cycle of

a system, introduce a fourth problem area: different

aspects of technology or product readiness contribute, in

varying degrees, to system risk at different times, and for

different types of acquisitions. For example, the fact that

there is an “end of life” announcement for a product that

is critical to a given system is probably more significant if

the system is fielded and operational, than if the system is

a laboratory prototype not intended for operational use.

5. An alternative approach

The previous section briefly outlined some of the

issues related to using TRLs in assessing the readiness of

NDI software products for use in a particular system. The

remainder of this paper will introduce a new approach

that addresses these issues, and show how this can

complement and extend the current TRL process to

provide greater insight into the technical and

programmatic risks facing a program.

Given that the readiness of a software product reflects

some combination of quality characteristics in a specific

context, then reasoning about readiness requires the

definition of some attributes of readiness. Addressing the

issues raised in the previous discussions on TRLs, these

attributes should

• Provide coverage of the quality attributes most

important to determining readiness.

• Be “orthogonal.” In other words, one criterion

should not be a function of another one.

While TRLs combine various quality aspects in a way

that it is impossible to directly discern the contributions of

any particular aspect to the overall readiness of a product

or technology, they do provide useful insights into two

key contributors to readiness:

1. Degree of functionality provided

2. Fidelity of the environment (to the intended

operational environment) in which this functionality has

been demonstrated

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

3

Other key contributors to readiness that are missing

from the TRLs include product/technology criticality in

the context of the system under consideration, and the

effects of software aging. There are two aspects of aging

that are of particular interest in this context: the maturity

of a product or technology—which varies by its “domain”

(e.g., COTS, GOTS, or OSS)—and its availability.

The remainder of this section will describe a set of

proposed readiness attributes, with definitions for various

“levels” within each attribute, and attempt to show how

these attributes satisfy (or at least improve upon TRLs)

the requirement for coverage of the salient quality

characteristics. Orthogonality of these attributes, and a

proposed evaluation framework, will be discussed in the

next section.

5.1 Requirements satisfaction

This attribute, shown in Table 1, describes how well

the requirements, including functional (e.g., throughput,

accuracy, latency) as well as non-functional (e.g.,

reliability, maintainability) allocated to a given software

product or technology are satisfied by it. For functional

requirements, this includes not only how many

requirements are satisfied, but also any provided

functionality that is not required. As previously

mentioned, this is one of the two attributes which is

derived from the definitions of TRLs.

Table 1. Requirements satisfaction attribute

One or more major requirements unsatisfied with no work-

arounds.

Unsatisfactory

One or more major requirements unsatisfied; system

performance degraded.

Major Limitations

Deficiencies in one or more second/third tier requirements, with

no work-arounds.

Limitations

Deficiencies in one or more second/third tier requirements, with

work-around possible.

Fair

Requirements satisfied, but there are some minor “fit” issues. Good

“Perfect” fit between requirements and product/technology

capabilities. (This rarely occurs in practice.)

Ideal

DefinitionEvaluation

Requirements (R)

One or more major requirements unsatisfied with no work-

arounds.

Unsatisfactory

One or more major requirements unsatisfied; system

performance degraded.

Major Limitations

Deficiencies in one or more second/third tier requirements, with

no work-arounds.

Limitations

Deficiencies in one or more second/third tier requirements, with

work-around possible.

Fair

Requirements satisfied, but there are some minor “fit” issues. Good

“Perfect” fit between requirements and product/technology

capabilities. (This rarely occurs in practice.)

Ideal

DefinitionEvaluation

Requirements (R)

There are a number of techniques to determine the

“fit” between the allocated requirements and the

capabilities of a product or technology, including the

“Risk Misfit” process described by Wallnau and

colleagues and the “Gap Analysis” methodology

described by Ncube and Dean [12, 13].

5.2 Environmental fidelity

This attribute (Table 2) describes how faithfully the

environment in which the software product under

evaluation has been demonstrated reproduces the target

operational environment. This provides some insight into

a product’s ability to satisfy the allocated requirements

based on observed performance in another context.

Table 2. Environmental fidelity attribute

Product used in a standalone environment. Standalone

Software product integrated with other components in a

development/integration environment.

Integration

Product/technology demonstrated through actual use in a

comparable environment.

Comparable

Use in a simulated operational environment demonstrated.Simulation

Use in a less than fully-stressed operational environment

demonstrated.

Partial

Subject product/technology demonstrated through use in the

actual operational environment under “fully-stressed” conditions

Full

DefinitionEvaluation

Environment (E)

Product used in a standalone environment. Standalone

Software product integrated with other components in a

development/integration environment.

Integration

Product/technology demonstrated through actual use in a

comparable environment.

Comparable

Use in a simulated operational environment demonstrated.Simulation

Use in a less than fully-stressed operational environment

demonstrated.

Partial

Subject product/technology demonstrated through use in the

actual operational environment under “fully-stressed” conditions

Full

DefinitionEvaluation

Environment (E)

5.3 Product criticality

This attribute is concerned with the degree to which

the target system is dependent upon, or inseparable from

the product or technology. For example, if the system is

architected and partitioned so that the only interface

between a product under evaluation and the target system

is a simple asynchronous messaging interface, then the

criticality of the product to the system is probably

minimal.

Table 3. Criticality attribute

No flexibility: any changes to the product/technology under

evaluation would require a complete redesign of system.

Fixed

Significant, wide-ranging architectural and/or implementation

changes required; good candidate for re-factoring/re-design.

High

Substitution possible; significant architectural and/or

implementation changes required, limited to a single aspect or

partition of the system.

Strong

At least one alternate can be substituted; moderate

reintegration required with pervasive software changes

necessary.

Moderate

At least one alternate can be substituted; reintegration required

with minimal software changes.

Low

At least one alternate product/technology can be easily

substituted within the target system.

Minimal

DefinitionEvaluation

Criticality (C)

No flexibility: any changes to the product/technology under

evaluation would require a complete redesign of system.

Fixed

Significant, wide-ranging architectural and/or implementation

changes required; good candidate for re-factoring/re-design.

High

Substitution possible; significant architectural and/or

implementation changes required, limited to a single aspect or

partition of the system.

Strong

At least one alternate can be substituted; moderate

reintegration required with pervasive software changes

necessary.

Moderate

At least one alternate can be substituted; reintegration required

with minimal software changes.

Low

At least one alternate product/technology can be easily

substituted within the target system.

Minimal

DefinitionEvaluation

Criticality (C)

On the other hand, if the system depends on some

proprietary capabilities contained within the product for

its correct performance, or the interface consists of

numerous, complex application programming interfaces

(APIs), then the ability of the system developer to

substitute another product is diminished—and the

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

4

criticality of the product to the system is correspondingly

greater. Attribute definitions are shown in Table 3.

5.4 Product aging

There are two aspects of interest to product “aging”:

Availability, and maturity. These are discussed in more

detail in the following sections.

5.4.1. Product availability. The Availability attribute

(Table 4) provides some insight into this aspect by

comparing a product’s lifespan with the requirements of

the system under development. Is it available now? When

needed? For how long? If it is being retired, has a

replacement been announced?

Table 4. Product availability attribute

Not available by system “need date,” and no suitable alternate

exists.

Unavailable

Not available by system “need date,” but suitable alternate

exists in the interim.

Alternate

Available by system “need date,” but EOL without replacement

announced.

EOL Without

Replacement

Available by system “need date,” but product End-Of-Life (EOL)

with replacement announced.

End-Of-Life (EOL)

With Replacement

Available by system “need date,” but will probably be replaced

during the system’s life.

Probably

Product/technology available over the intended lifespan of the

system under development. (This will almost never occur in

practice.)

Lifespan

DefinitionEvaluation

Availability (A)

Not available by system “need date,” and no suitable alternate

exists.

Unavailable

Not available by system “need date,” but suitable alternate

exists in the interim.

Alternate

Available by system “need date,” but EOL without replacement

announced.

EOL Without

Replacement

Available by system “need date,” but product End-Of-Life (EOL)

with replacement announced.

End-Of-Life (EOL)

With Replacement

Available by system “need date,” but will probably be replaced

during the system’s life.

Probably

Product/technology available over the intended lifespan of the

system under development. (This will almost never occur in

practice.)

Lifespan

DefinitionEvaluation

Availability (A)

5.4.2 Product maturity. The second aspect of product

aging is the maturity of the software product or

technology (Table 5). Unlike the case with the other

attributes, there are several distinct modes, or domains, of

NDI software with their own maturation mechanisms,

each of which have differing implications to readiness.

While these three domains represent different

maturation mechanisms, some rough equivalence across

domains can be made.

6. Evaluation framework

We’ve seen that readiness is defined by multiple attributes

and their importance relative to one another. Multi-

Criteria Decision Making (MCDM) theory provides

numerous methods for determining the optimal solution in

the presence of multiple criteria. These methods fall into

two broad classes: Multi-Objective Decision Making

(MODM) and Multi-Attribute Decision Making

(MADM), with subclasses based on the data used (i.e.,

deterministic, stochastic, or “fuzzy”) and the number of

decision makers (i.e., single or group) [14].

Table 5. Product maturity attribute

Product an-

nounced, but not

yet started

System planned/

budgeted, but not

yet started.

Product announced

(see “vapor-ware”)

Concept

Product under

development

System in

development

“Engineering tool”

(“opportunistic” re-

use)

Prototype

Product in limited

or private testing

System in DT&EProduct in limited

or private testing

Subsystem/

Component Test

Product undergoing

public beta/release

candidate testing

System in OT&EProduct undergoing

public beta/release

candidate testing

System Test

Product is in limited

public use

System at IOCLimited or first

commercial use

Deployed

Product is in large-

scale public use

System has

achieved FOC

Widespread

commercial use;

available as COTS

Off-the-shelf

Open-Source

Software (OSS)

Government-Off-

The-Shelf (GOTS)

Commercial-Off-

The-Shelf (COTS)

NDI Software Domain-Specific Definitions

Evaluation

Maturity (M)

Product an-

nounced, but not

yet started

System planned/

budgeted, but not

yet started.

Product announced

(see “vapor-ware”)

Concept

Product under

development

System in

development

“Engineering tool”

(“opportunistic” re-

use)

Prototype

Product in limited

or private testing

System in DT&EProduct in limited

or private testing

Subsystem/

Component Test

Product undergoing

public beta/release

candidate testing

System in OT&EProduct undergoing

public beta/release

candidate testing

System Test

Product is in limited

public use

System at IOCLimited or first

commercial use

Deployed

Product is in large-

scale public use

System has

achieved FOC

Widespread

commercial use;

available as COTS

Off-the-shelf

Open-Source

Software (OSS)

Government-Off-

The-Shelf (GOTS)

Commercial-Off-

The-Shelf (COTS)

NDI Software Domain-Specific Definitions

Evaluation

Maturity (M)

MODM applies to problems in which the decision

space is continuous; MADM, in contrast, is used in

decision problems with discrete decision spaces. The

methodology described in this paper falls into the

deterministic, single decision maker MADM class.

Saaty’s Analytic Hierarchy Process (AHP), supported by

several commercially available tools (e.g., Expert

Choice), is recommended as an evaluation approach [15].

AHP defines a process for evaluating multiple criteria,

using a hierarchical structure (i.e., goal, attributes and

sub-attributes, and alternatives) and pair-wise

comparisons to determine the alternative that best satisfies

the desired goal. The use of ordinal values, such as “x is

much more important than y” or “x has roughly the same

importance as y,” works well in the context of software

intensive system acquisition and development where

cardinal values (e.g., “Criticality” = 7.5) cannot be

defined with any degree of confidence. One issue with

using AHP is that the evaluation criteria must be

orthogonal for the results to be valid. In other words, one

criterion cannot be dependent on another criterion. The

criteria described in this report, on the other hand, do

present at least the appearance of orthogonality: none of

the attributes (i.e., criticality, requirements satisfaction,

product availability, product maturity, and environmental

fidelity) are expressed in terms of any other attribute, nor

does the evaluation of an attribute imply anything about

any other attribute.

While AHP provides a method to reason about the

contributions of various attributes to satisfying a desired

goal, neither AHP nor the approach described in this

paper define how the relative rankings of the criteria are

obtained. Just as the SEI Capability Maturity Model®

(CMM) framework leaves the definition of appropriate

processes to the implementing organization, this

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

5

framework leaves the criteria evaluation definitions to the

developing or acquiring organization.

7. Example application

To see how this could work in practice, a very simple

hypothetical system provides the context within which a

single software technology/product choice is examined.

First, the evaluation is made using TRLs alone, then is

repeated using the criteria and evaluation framework

described in this paper. Finally, the results of the two

approaches are compared.

In this system, two NDI software products are being

considered for potential use. The first of these, “Product

A,” has the following characteristics:

• It is nearing deployment, and is currently

undergoing release candidate testing.

• All of the system threshold requirements, and most

of the objective requirements allocated to this component

are satisfied. The missing functionality can be provided

through the use of some operational workarounds.

• The product can be replaced fairly easily. That is, it

is sufficiently decoupled from the rest of the system that

changes in this product should not require changes

elsewhere in the system.

• It is projected to be available by the “need date” for

the system under development, but will probably have to

be replaced sometime during the development system’s

life cycle.

• Its capabilities have been demonstrated in an

environment that partially replicates the intended

operational environment for the final system.

Similarly, “Product B” exhibits the following traits:

• It is currently available as a COTS product.

• All threshold requirements are satisfied. Most

objective requirements are satisfied, but some functions

are missing and cannot be satisfied through any

combination of work-arounds.

• The integration of this product and the system

would necessitate a moderate reintegration effort, with

widespread—though relatively moderate—software

changes to the target system if the product had to be

replaced.

• The product is available now—and will be

available when needed for the development system—but

there has been an “end of life” announcement, with a

replacement planned by its developer.

• Its capabilities have been demonstrated in the

target system’s intended operational environment.

7.1 TRL assessment

Applying CERDEC’s draft software TRLs to evaluate

the readiness of these two products, using the TRL

calculator from AFRL, results in the following:

Product A: Evaluated as being at TRL 7

Product B: Evaluated as being at TRL 9

7.2 Alternative assessment

The first step in this process is to determine the relative

importance of the criteria in context. The context for a

given system development is determined by the

interactions of many complex variables, and cannot be

ascertained by the application of any “cookbook” or

prescriptive process. Among the factors to be considered

in this determination are

• Where is the system in its life cycle?

• What is the development program’s risk tolerance?

• How important is it for the NDI product to be

stable?

For this example, the relative importance of the criteria

was determined to be as follows:

• Criticality (C) is slightly more important than

Requirements (R). In other words, it is somewhat less

important in this context that the product satisfies every

requirement allocated to it, and more important that the

system not be too dependent on any particular product

choice.

• R is significantly more important than either

Maturity (M) or Environmental Fidelity (E). This means

that, for this stage in the system’s development, it is much

less important that the product be a true “off-the-shelf”

product, or that it has been demonstrated in the intended

operational environment, than it is for it to satisfy the

allocated requirements or be easily replaced.

• M and E are, in turn, more important than

Availability (A). This means that the likelihood that the

product will be replaced during the life of the system is

less important than its level of “productization,” or how

closely its demonstration environment matches that of the

target system. These relations can be expressed as

C > R >> {M, E} > A

In the AHP, this relation is converted into a pair-wise

comparison matrix (PCM), where each entry in the matrix

represents the comparison between the row attribute (X)

and each column attribute (Y) using the values shown in

Table 6 [13]:

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

6

Table 6. Pair-wise comparison matrix values

X Compared to Y
X Preferred to/more

 important than Y

Y Preferred to/more

important than X

Equally preferred 1 1

Moderately preferred 3 1/3

Strongly preferred 5 1/5

Very strongly preferred 7 1/7

Extremely strongly preferred 9 1/9

The second step is to determine, within each of these

attributes, the relative preference for the various levels

within the context of a particular development. In this

example, comparing the importance/desirability between

a rating of “Minimal” for the Criticality attribute, and

other levels within that attribute, resulted in a

determination that “minimal” was

• Moderately preferable to “low“

• Strongly preferred to “moderate”

• Very strongly preferred to “strong”

• Somewhat more strongly preferred to “high” than

to “strong”

• Extremely more preferable than “fixed”

Completing the remaining comparisons, these

judgments are then converted to a PCM:

This process is repeated for the remaining attributes (i.e.,

R, A, M, and E).

The next step is to evaluate each candidate product

against each readiness attribute, resulting in a separate

PCM for the candidates for each attribute. As discussed in

an earlier section, this methodology neither prescribes nor

proscribes any particular evaluation techniques: each

development program is unique, and the implementation

of this approach must be tailored accordingly. In this

example, evaluating both products against the Criticality

attribute results in the PCM:

PCMCriticality

Similarly, the remaining product/attribute PCMs are

calculated:

PCMRequirements

PCMAvailability

PCMMaturity

PCMEnvironment

Finally, applying the AHP with these PCMs produces

weighted scores for the candidate products as shown:

Product A: 0.654

Product B: 0.346

7.3 Comparison of results

From this extremely simple example, the effect of

system and development context on product readiness is

apparent. Using the existing (draft) software TRL

definitions and the AFRL TRL calculator, Product B—

which is available as a COTS product, and has been used

in the target system’s intended operational environment—

is determined to be at a higher degree of readiness than

Product A (TRL 9 versus TRL 7). When context is taken

into account—reflecting management and engineering

estimations about the relative importance of the readiness

attributes, as well as value judgments about preferences

within each attribute—Product A is seen to have higher

readiness.

8. Conclusions

3

53

753

973

985

5

73

 Mi L Mo S H F

Mi

L

Mo

S

H

F

16/1

61

 A B

A

B

12/1

21

 A B

A

B

16

6/11

 A B

A

B

14

4/11

 A B

A

B

14/1

41

 A B

A

B

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

7

While there is a growing body of evidence that using

TRLs as part of an overall risk assessment can lead to an

improved understanding of the technological and

programmatic risks in a system development or

acquisition, there are several difficulties in applying

“traditional” TRLs to the evaluation of software

technologies. This is especially true for NDI, including

COTS, GOTS, and OSS, where TRLs neither provide any

way to discriminate between mature technologies or

products, nor take into account the inevitable decay which

all software experiences. Finally, the existing TRL

framework lacks any explicit mechanism to deal with

various aspects of the system and development context,

including the time-varying effects of the various

contributors to technology and product readiness.

The methodology described in this paper provides an

alternative to using TRLs for NDI software products and

technologies that directly addresses these shortcomings.

The methodology allows the evaluation criteria to be

tailored to the particulars of any system development,

including judgments about acquisition and development

risk. As a result, a more nuanced determination of product

or technology readiness is possible. On the other hand,

considerably more effort is required to perform this

evaluation than simply assessing TRLs.

So far, this methodology has not been applied to an

actual system development and, thus, remains purely

theoretical. It is planned, over the next year or so, to apply

this to one or more case studies to see how well this

approach is able to “predict the past.” After some

refinement, it should then be possible to pilot this

methodology in an actual system development.

9. References

1. Eisman, M. and Gonzales, D.: Life Cycle Cost Assessments

for Military Transatmospheric Vehicles,

http://www.rand.org/publications/MR/MR893/, 1997.

2. Mankins, J.: “Technology Readiness Levels – A White

Paper”, http://advtech.jsc.nasa.gov/ downloads/TRLs.pdf, 1995.

3. Department of Defense.: Operation of the Defense Acquisition

System. http://dod5000. dau.mil/DOCS/DoDI%205000.2-

signed%20(May%2012,%202003).doc, 2003.

4. General Accounting Office.: Better Management of

Technology Development Can Improve Weapon System

Outcome, http://www.gao.gov/archive/1999/ns99162.pdf, 1999.

5. Graettinger, C., Garcia, S., Siviy, J., Schenk, R. and Syckle,

P.: Using the Technology Readiness Levels Scale to Support

Technology Management in the DoD’s ATD/STO Environment.

http://www.sei.cmu.edu/publications/documents/02.reports/02sr

027.html, 2002.

6. Graettinger, C., Garcia, S. and Ferguson, J., TRL Corollaries

for Practice-Based Technologies,

http://www.acq.osd.mil/sis/Conference%20Presentations/TRL%

20Corollaries%20for%20Practice%20Based%20Technologies.p

df, 2003.

7. International Organization for Standardization, ISO/IEC

9126-1 Software Engineering—Product Quality—Part 1:

Quality Model, Geneva, Switzerland, 2001.

8. Hanakawa, H., Morisaki, S. and Matsumoto, K., “A Learning

Curve Based Simulation Model for Software development”,

Proceedings of the 20th International Conference on Software

Engineering, IEEE Computer Society, Washington, DC, 1998,

pp. 350-359.

9. Wong, B. “NASA Cost Symposium – Multivariate Instrument

Cost Model-TRL (MICM-TRL)”,

http:/ipao.lare.nasa.gov/symposium/MICM-TRL-Wong.pdf,

2000.

10. Basili, V. and Boehm, B. “COTS-Based Systems Top 10

List”, IEEE Computer, IEEE, May 2001, pp. 2-4.

11. Eick, S., Graves, T., Karr, A., Marron, J. and Mockus, A.

“Does Code Decay? Assessing the Evidence from Change

Management Data”,

http://www.cs.umd.edu/class/spring2003/cmsc838p/Evolution/d

ecay.pdf, 2001.

12. Wallnau, K., Hissam, S. and Seacord, R Building Systems

from Commercial Components, Addison-Wesley, Boston, MA.,

2002.

13. Ncube, C. and Dean, J. “The Limitations of Current

Decision-Making Techniques”, Proceedings of the First

International Conference on COTS-Based Software Systems,

Springer-Verlag, New York, NY, 2002, pp. 176-187.

14. Tryantaphyllou, E., Shu, B., Sanchez, N. and Ray, T. “Multi-

Criteria Decision Making: An Operations Research Approach”,

Encyclopedia of Electrical and Electronics Engineering, John

Wiley & Sons, New York, NY, 1998, pp. 175-186.

15. Saaty, T. The Analytic Hierarchy Process, McGraw-Hill,

New York, NY, 1980.

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

8

